Time Series Forecasting Using Generative AI

by Banglore Vijay Kumar Vishwas

Data Science

Book Details

Book Title

Time Series Forecasting Using Generative AI

Author

Banglore Vijay Kumar Vishwas

Publisher

Apress

Publication Date

2025

ISBN

9798868812767

Number of Pages

226

Language

English

Format

PDF

File Size

2.9MB

Subject

time-series

Table of Contents

  • About the Authors
  • About the Technical Reviewer
  • Acknowledgments
  • Introduction
  • Chapter 1: Time Series Meets Generative AI
  • What Sparked Interest in Time Series?
  • Introduction to Time Series Analysis
  • 1.8 References
  • Chapter 2: Neural Networks for Time Series
  • 2 Introduction to Perceptron
  • 2.1 Technical Overview of a Perceptron
  • 2.2 What Is Multilayer Perceptron?
  • 2.3 CNN-Based Architecture for Time Series
  • 2.5 Neural Networks for Sequential Data
  • 2.6 Neural Networks Based on Autoregression
  • 2.7 Neural Basis Expansion Analysis
  • 2.8 Summary
  • 2.9 References
  • Chapter 3: Transformers for Time Series
  • 3 Introduction to Transformers
  • 3.1 Technical Overview of Transformers
  • 3.2 Vanilla Transformer
  • 3.3 Inverted Transformers
  • 3.4 DLinear
  • 3.5 NLinear
  • 3.6 Patch Time Series Transformer
  • 3.7 Summary
  • 3.8 References
  • Chapter 4: Time-LLM: Reprogramming Large Language Model
  • 4 Fine-Tuning vs. Reprogramming
  • 4.1 Technical Overview of Time-LLM
  • 4.2 Time-LLM in Action
  • 4.3 Summary
  • 4.4 Reference
  • Chapter 5: Chronos: Pre-trained Probabilistic Time Series Model
  • 5 Introduction
  • 5.1 Technical Overview of Chronos
  • 5.2 Time Series Tokenization
  • 5.3 Training
  • 5.4 Inference
  • 5.5 Chronos in Action
  • 5.6 Summary
  • 5.7 Reference
  • Chapter 6: TimeGPT: The First Foundation Model for Time Series
  • 6 Introduction
  • 6.1 Technical Overview of TimeGPT
  • 6.2 TimeGPT in Action
  • 6.3 Summary
  • 6.4 References
  • Chapter 7: MOIRAI: A Time Series LLM for Universal Forecasting
  • 7 Introduction
  • 7.1 Challenges with Building a Universal Forecasting Model
  • 7.2 Technical Overview of MOIRAI
  • 7.3 MOIRAI in Action
  • 7.4 Summary
  • 7.5 Reference
  • Chapter 8: TimesFM: Time Series Forecasting Using Decoder-Only Foundation Model
  • 8 Introduction
  • 8.1 Technical Overview of TimesFM
  • 8.2 TimesFM in Action
  • 8.3 Summary
  • 8.4 Conclusion
  • 8.5 Reference
  • Index